Экологические катастрофы. Земля - как планета Солнечной системы

ОКРУЖАЮЩАЯ СРЕДА КАК СИСТЕМА

Окружающая среда как система - 4 ч.

ЛЕКЦИЯ № 5-6 (4 ч.).

ТЕХНОГЕННЫЕ СИСТЕМЫ И ЭКОЛОГИЧЕСКИЙ РИСК

Системный подход в изучении экологических систем. Атмосфера, гидросфера, литосфера - основные компоненты окружающей среды. Законы функционирования биосферы.

Защитные механизмы природной среды и факторы, обеспечивающие ее устойчивость. Динамическое равновесие в окружающей среде. Гидрологический цикл. Круговорот энергии и вещества в биосфере. Фотосинтез.

Условия и факторы, обеспечивающие безопасную жизнедеятельность в окружающей среде. Естественные "питательные" циклы, механизмы саморегуляции, самоочищение биосферы. Возобновляемые и невозобновляемые природные ресурсы.

Совокупность всех биогеоценозов (экосистем) нашей планеты создаёт гигантскую глобальную экосистему, называемую биосферой (от греч. биос - жизнь, сфера - шар) - область системного взаимодействия живого и костного вещества планеты. Биосфера – это всё пространство, где существует или когда-либо существовала жизнь, т.е. где встречаются живые организмы или продукты их жизнедеятельности. Та часть биосферы, где живые организмы встречаются в настоящее время, называют современной биосферой, или необиосферой, а древние биосферы относят к былым биосферам, иначе палеобиосферам или мегасферам. Примерами последних являются безжизненные скопления органических веществ (залежи угля, нефти, газа и др.) или запасы иных соединений, образовавшихся при непосредственном участии живых организмов (известняки, ракушечники, образования мела, ряда руд и многое др.).

Биосфера включает в себя: аэробиосферу (нижнюю часть атмосферы), гидробиосферу (всю гидросферу), литобиосферу (верхние горизонты литосферы – твёрдой земной оболочки). Границы нео- и палеобиосферы различны. Теоретически верхняя граница у них определяется озоновым слоем. Для необиосферы это нижняя граница озонового слоя (около 20 км), ослабляющего до приемлемого уровня губительное космическое ультрафиолетовое излучение, а для палеобиосферы - это верхняя граница того же слоя (около 60 км), ибо кислород в атмосфере Земли есть результат преимущественно жизнедеятельности растительности (так же, как и другие газы в соответствующей мере).

Биосфера - это часть оболочек земного шара, населённая живыми организмами, т.е.часть атмосферы, гидросферы и литосферы.

16) Характеристика химического состава атмосферы как геосферы и части биосферы

Атмосфера Земли - это газовая оболочка, окружающая Землю. Атмосферой называют ту область вокруг Земли, в которой газовая среда вращается вместе с ней как единое целое. Масса атмосферы составляет 5.15 - 5.9х10 15 тонн. Атмосфера как компонент биогеоценоза представляет собой слой воздуха в почве и над ее поверхностью, в пределах которого наблюдается взаимодействие компонентов биосферы.



Современная атмосфера имеет вторичное происхождение и образовалась из газов, выделенных твердой оболочкой Земли после формирования планеты. В течение геологической истории Земли атмосфера претерпела значительную эволюцию под влиянием ряда факторов: улетучивания атмосферных газов в космическое пространство;

выделения газов в результате вулканической деятельности, расщепления молекул под влиянием солнечного ультрафиолетового излучения, химических реакций между компонентами атмосферы и породами земной коры; захвата межпланетной среды.

Развитие атмосферы тесно связано с геологическими и геохимическими процессами, а также с деятельностью живых организмов. Атмосфера защищает поверхность Земли от разрушительного действия падающих метеоритов, большая часть из которых сгорает в плотных слоях атмосферы.

По своему строению атмосфера имеет сложную структуру, которая определяется особенностями вертикального распределения температуры. На высотах более 1000 км находится экзосфера, откуда атмосферные газы рассеиваются в мировое пространство. Здесь происходит постепенный переход от атмосферы к межпланетному пространству. Все структурные параметры атмосферы - температуры, давление и плотность – обладают значительной пространственно-временной изменчивостью.

Сложная структура атмосферы проявляется и в ее химическом составе. Так, если на высотах до 90 км, где существует интенсивное перемешивание, относительный газовый состав остается практически неизменньм, то выше 90 км под влиянием ультрафиолетового излучения солнца происходит диссоциация молекул газов и сильное изменение состава атмосферы с высотой. Типичные черты этой части атмосферы – слой озона и собственное свечение. Сложная слоистая структура характерна для атмосферного аэрозоля - взвешенных в газовой среде жидких или твердых частиц земного или космического происхождения. Аэрозоль с жидкими частицами - туман, с твердыми частицами - дым. Диаметр твердых частиц аэрозоля в среднем 10 -9 - 10 -13 мм, капель 10-6 - 10 -2 мм. Слоистым является и вертикальное распределение электронов и ионов в атмосфере, что выражается в существовании различных слоев ионосферы.

Состав атмосферы Земли уникален. Например, если атмосферы Юпитера и Сатурна состоят главным образом из водорода и гелия. Марса и Венеры - из углекислого газа, то атмосфера Земли состоит преимущественно из кислорода и азота. В ней содержатся также аргон, углекислый газ, неон и другие постоянные и переменные компоненты. Объемная концентрация азота составляет 78.084%, кислорода - 20.9476%, аргона - 0.934%, углекислого газа - 0.0314. Эти данные относятся только к нижним слоям атмосферы.

Наиболее важная переменная составляющая часть атмосферы - водяной пар. Пространственно-временная изменчивость его концентрации колеблется в широких пределах у земной поверхности - от 3% в тропиках до 0.00002% в Антарктиде. Основная масса водяного пара сосредоточена в тропосфере, и его концентрация быстро убывает с высотой. Среднее содержание водяного пара в вертикальном столбе атмосферы в умеренных широтах составляет около 15-17 мм "слоя осажденной воды".

Существенное влияние на атмосферные процессы, особенно тепловой режим, оказывает озон. Он, в основном, сосредоточен в стратосфере, где вызывает поглощение ультрафиолетовой солнечной радиации. Средние месячные значения общего содержания озона изменяются в зависимости от широты и времени года и составляют толщину слоя в пределах 2.3-5.2 мм при наземных значениях давления и температуры. Наблюдается увеличение содержания озона от экватора к полюсам и годовые изменения с минимумом осенью и максимумом весной. В настоящее время отмечено разрушение озонового слоя под влиянием хозяйственной деятельности. Главными разрушителями озонового слоя являются фреоны (хладоны), представляющие собой группу галогеносодержащих веществ, фреоны инертны у поверхности Земли, но, поднимаясь в стратосферу, они подвергаются фотохимическому разложению, выделяют ион хлора, служащий катализатором химических реакций, разрушающих молекулы озона.

Внешняя, верхняя граница атмосферы, постепенно переходит в межпланетный газ, плотность которого составляет 1000 пар ионов в кубическом сантиметре.

17) Характеристика химического состава гидросферыкак геосферы и части биосферы

Гидросфера - водная оболочка Земли. Вследствие высокой подвижности воды проникают повсеместно в различные природные образования. Вода находится в виде паров и облаков в земной атмосфере, формирует океаны и моря, существует в виде ледников в высокогорных районах континентов. Атмосферные осадки проникают в толщи осадочных пород, образуя подземные воды. Вода способна растворять многие вещества, поэтому любые воды гидросферы можно рассматривать в качестве естественных растворов различной степени концентрации. Даже наиболее чистые атмосферные воды содержат 10-50 мг/л растворенных веществ.

Вода как окись водорода Н2О является простейшим устойчивым в обычных условиях соединением водорода с кислородом. Общее количество воды на планете составляет приблизительно 1.5-2.5х10 24 граммов (от 1-5 до 2.5 млрд км 3).

По выражению В.И. Вернадского, вода стоит особняком в истории нашей планеты, но воде принадлежит важнейшая роль в геологической истории Земли. Вода является одним из факторов формирования физической и химической среды, климата и погоды на нашей планете, возникновения жизни на Земле.

Наша планета на 3/4 покрыта водой, льдами; над ней плывут облака в виде скопления парообразной воды. Вода наполняет клетки растений, животных; клетки тела человека в среднем на 70% состоят из воды.

Воды в природных условиях всегда содержат растворенные соли, газы, органические вещества. Их концентрация меняется в зависимости от происхождения воды и окружающих условий- При концентрации солей до 1 г/кг вода считается пресной, до 25 г/кг - солоноватой и более 25 г/кг - соленой.

Наименее минерализованными считаются атмосферные осадки, в которых, в среднем, концентрация солей составляет 10-20 мг/кг, затем пресные озера и реки (5- 1000 мг/кг). Соленость океана составляет около 35 г/кг. Моря имеют меньшую минерализацию - от 8 до 22 г/кг. Минерализация подземных вод вблизи поверхности в условиях избыточного увлажнения составляет до 1 г/кг, а в засушливых условиях до 100 г/кг.

В пресных водах обычно преобладают ионы НСО3 - (-), Са 2+ , Мg 2+ . По мере увеличения общей минерализации растет концентрация ионов SO4 - , Сl - , Nа + , К + . В высокоминерализованных водах преобладают ионы хлора и натрия, реже - магния и очень редко - кальция. Прочие элементы содержатся в очень малых количествах, но почти все естественные элементы периодической системы найдены в природных водах.

Из растворенных газов в воде присутствуют азот, кислород, двуокись углерода, благородные газы, редко - сероводород и углеводороды.

Концентрация органических веществ невелика. Она составляет: в реках - около 20 мг/л, в подземных водах еще меньше и в океанах - около 4 мг/л. Исключение составляют болотные воды и воды нефтяных месторождений, а также воды. Загрязненные промышленными и бытовыми стоками, где концентрация органических веществ может быть велика.

Первоисточниками солей природных вод являются вещества, которые образуются при химическом выветривании изверженных пород, а также вещества, которые выделялись из недр Земли на протяжении ее истории. От разнообразия состава этих веществ и условий, в которых происходило их взаимодействие с водой, зависит состав воды. Огромное значение для формирования состава воды имеет и воздействие на нее живых организмов, а также хозяйственная деятельность человека.

Огромна роль Мирового океана в стабилизации природных условий на поверхности Земли. Это обусловлено в значительной степени его массой и занимаемой площадью.

Около 52.6% акватории океана имеет глубину от 4000 до 6000 м. Участки с глубинами более 6000 м занимают около 1.2%, мелководные участки - до 200 м – также занимают небольшую площадь - 7,5%. Остальная часть акватории, около 38.7%, имеет глубину от 200 до 4000 м. Большая часть Мирового океана расположена в южном полушарии, где он занимает 81% площади поверхности, в северном полушарии - 61% поверхности.

В целом гидросферу отождествляют с океанами и морями, так как их масса составляет 91.3% всей гидросферы.

Вода является самым мощным поглотителем солнечной энергии тепла на поверхности Земли, Решающая роль в поглощении солнечной энергии на нашей планете принадлежит Мировому океану, способность которого поглощать солнечную энергию в 2-3 раза больше, чем у поверхности суши. От поверхности океана отражается только 8% солнечной радиации. Океан является поглотителем тепла на планете. Нагревание его происходит в экваториальном поясе примерно в полосе от 15 градусов Южной широты до 30 градусов Северной широты. В более высоких широтах обоих полушарий океан отдает тепло, полученное в поясе нагревания.

Воды Мирового Оксана все время находятся в активном движении. Этому способствуют атмосферная циркуляция, неравномерный нагрев поверхности, контрасты солености, температурные контрасты, силы притяжения Луны и Солнца.

Однако благодаря своему разнообразию гидросфера является чрезвычайно устойчивой к внешним и внутренним воздействиям. Значительное разнообразие создается одновременным существованием воды в трех фазах, резко различающихся своими составляющими, большим набором растворенных в ней веществ и газов, формированием разнообразных статических и динамических структур. Гидросфера Земли как компонент биосферы представляет собой глобальную термодинамические открытую систему, устойчивую и поддерживающую устойчивость биосферы в целом.

18) Характеристика химического состава литосферы как геосферы и части биосферы

Земная кора - наиболее неоднородная оболочка Земли, образованная различными минеральными ассоциациями в виде осадочных, изверженных и метаморфических горных пород, различных форм залегания.

В настоящее время под земной корой понимают верхний слой твердого тела планеты, расположенный выше сейсмической границы. Эта граница находится на разных глубинах, где отмечается резкий скачок скорости сейсмических волн, возникающих при землетрясении. Выделяют два типа земной коры - континентальный и океанический. Континентальный отличается более глубоким залеганием сейсмической границы. В настоящее время чаще используется термин литосфера, предложенный еще Э. Зюссом, под которым понимают более обширную, чем земная кора, область.

Литосфера - это верхняя твердая оболочка Земли, имеющая большую прочность и переходящая в менее прочную астеносферу. Литосфера включает земную кору и верхнюю мантию до глубины примерно 200 км.

Строение земной коры имеет неровный характер. Горные системы чередуются с равнинами на материках. Материки, в свою очередь, представляют собой приподнятые над уровнем моря участки земной коры. Пространственное расположение материков на планете В.И. Вернадский назвал "диссиметрией планеты". Если разделить земной шар по тихоокеанскому побережью на две половины, то получится как бы два полушария: континентальное, где сосредоточены все материки с Атлантическим и Индийским океанами, и океаническое, которое займет площадь всего Тихого океана. Это связано со строением и составом земной коры в пределах континентального и океанического полушарий. Разная толщина земной коры в области континентов и океанов связана с различием состава слагающих ее горных пород. Океаническая кора сложена в основном базальтовым материалом, континентальная - материалом, близким по составу к граниту. Гранитные породы содержат больше кремневой кислоты и меньше железа, чем базальтовые.

Общий химический состав земной коры определяют немногие химические элементы. Всего лишь восемь элементов: кислород, кремний, алюминий, железо, кальций, натрий, магний, калий распространены в земной коре в весовом количестве более 1%. Ведущим, наиболее распространенным элементом земной коры, является кислород, составляющий едва ли не половину массы (47.3%) и 92% ее объема. Таким образом, в количественном отношении земная кора - это царство кислорода, химически связанного с другими элементами.

Распространенность химических элементов в земной коре неодинакова и повторяет в определенной мере космическую распространенность. Преобладают легкие элементы четырех порядковых номеров, составляющих первые четыре периода таблицы Менделеева. Преобладание кислорода среди химических элементов земной коры определяет ведущее значение распространения минералов, в состав которых он входит. Используя данные о распространенности элементов в земной коре, можно рассчитать соотношение слагающих ее минералов, обычно называемых породообразующими.

Поверхность континентов на 80% занята осадочными породами, а океаническое дно - почти полностью свежими осадками как продуктами сноса материала континентов и деятельности морских организмов. Земная кора первоначально возникла как продукт выплавления первичной мантии, который затем был переработан в биосфере под влиянием воздуха, воды и деятельности живых организмов.

Континентальная часть земной коры в течение длительной геологической истории находилась в области биосферы, что наложило свой отпечаток на облик, состав и распространенность осадочных пород и сосредоточенность в них полезных ископаемых в виде угля, нефти, горючих сланцев, кремнистых и карбоновых пород, связанных в прошлом с жизнедеятельностью организмов. В связи с этим континентальная земная кора имеет прямое отношение к биосфере Земли.

19) Законы функционирования биосферы.

Главную роль в теории биосферы В.И. Вернадского играет представление о живом веществе и его функциях.

Главная функция биосферы заключается в обеспечении круговорота химических элементов. Глобальный биотический круговорот осуществляется при участии всех населяющих планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных химических элементов. Используя неорганические вещества, зеленые растения за счет энергии солнца создают органическое вещество, которое другими живыми существами (гетеротрофами-потребителями и деструкторами) разрушается с тем, чтобы продукты этого разрушения могли быть использованы растениями для новых органических синтезов.

Другой важнейшей функцией живого вещества, а, следовательно, биосферы является газовая функция. Благодаря деятельности живого вещества изменился состав атмосферы, в частности, в результате процесса фотосинтеза в ней появился в значительных количествах кислород. Большинство газов верхних горизонтов планеты порождено жизнью. В верхних слоях тропосферы и в стратосфере под влиянием ультрафиолетового излучения из кислорода образуется озон. Существование озонового экрана – также результат деятельности живого вещества, которое по выражению В.И. Вернадского, "как бы само создает себе область жизни". Углекислый газ поступает в атмосферу в результате дыхания всех живых организмов. Весь азот атмосферы имеет органогенное происхождение. К газам органического происхождения относятся также сероводород, метан и множество других летучих соединений, образующихся в результате разложения органических веществ растительного происхождения, ранее захороненных в осадочных толщах.

Живое вещество способно перераспределять атомы в биосфере. Одной из функций живого вещества является концентрационная. Многие организмы обладают способностью накапливать в себе определенные элементы, несмотря на незначительное их содержание в окружающей среде. На первом месте стоит углерод. Многие организмы концентрируют кальций, кремний, натрий, алюминий, йод и т.д. Отмирая, они образуют скопление этих веществ. Возникают залежи угля, известняков, бокситов, фосфоритов, осадочных железных руд и т.д. Многие из них человек использует как полезные ископаемые.

Окислительно-восстановительная функция живого вещества заключается в его способности осуществлять окислительные и восстановительные химические реакции, почти невозможные в неживой природе. В биосфере в результате жизнедеятельности микроорганизмов в больших масштабах осуществляются такие химические процессы, как окисление и восстановление элементов с переменной валентностью (азот, сера, железо, марганец и др.). Микроорганизмы-восстановители - гетеротрофы - используют в качестве источника энергии органические вещества. К ним относятся денитрифицирующие и сульфатредуцирующие бактерии, восстанавливающие из окисленных форм азот до элементарного состояния и серу до сероводорода. Микроорганизмы-окислители могут быть как аутотрофами, так и гетеротрофами. Это бактерии, окисляющие сероводород и серу, нитри- и нитрофицирующие микроорганизмы, железные и марганцевые бактерии, концентрирующие эти металлы в своих клетках.

20) Защитные механизмы природной среды и факторы, обеспечивающие ее устойчивость. Динамическое равновесие в окружающей среде. Гидрологический цикл. Круговорот энергии и вещества в биосфере. Фотосинтез.

Биосфера выступает как огромная, чрезвычайно сложная экологическая система, работающая в стационарном режиме на основе тонкой регуляции всех ее составляющих частей и процессов.

Стабильность биосферы основывается на высоком разнообразии живых организмов, отдельные группы которых выполняют различные функции в поддержании общего потока вещества и распределении энергии, на теснейшем переплетении и взаимосвязи биогенных и абиогенных процессов, на согласованности циклов отдельных элементов и уравновешивании емкости отдельных резервуаров. В биосфере действуют сложные системы обратных связей и зависимостей.

Стабильность биосферы обусловлена тем, что результаты активности трех групп организмов, выполняющих разные функции в биотическом круговороте, - продуцентов (аутотрофы), потребителей (гетеротрофы) и деструкторов (минерализирующие органические остатки) - взаимоуравновешиваются.

Важное значение для поддержания стабильности биосферы наряду с биологическим круговоротом имеет круговорот воды, источником энергии для которого служит солнечное излучение. В круговороте воды огромную роль играют живые организмы, в частности, транспирирующие растения, на создание единицы продукции которых требуется в сотни раз больше транспирируемой влаги.

В пределах ограниченных территорий круговорот воды заключается в испарении ее с поверхности почвы, водоемов, растений, концентрировании облаков и выпадении осадков. В пределах всей планеты этот круговорот выражается в водообмене "океаны - материки". Вода, испаряемая с поверхности океана, переносится ветрами на материки, выпадает над ними и с речными и подземными стоками вновь возвращается в океан.

Круговорот воды - главный источник механической работы в биосфере, тогда как биологический круговорот обусловлен в основном химическими процессами, которые сопровождаются превращениями химической энергии. Однако механическая работа, совершаемая на Земле в ходе круговорота воды - выветривание, растворение и т.п. – тем не менее, совершается или при участии живых организмов или за счет продуктов их жизнедеятельности. Перемещение воды осуществляют в биосфере процессы эрозии, транспорта, перераспределения, осаждения и накопления механических и химических осадков на суше и в океане.

Солнечная энергия вызывает планетарные перемещения воздушных масс в результате их неравномерного нагревания. Возникают грандиозные процессы атмосферной циркуляции, которые носят ритмический характер.

Все эти планетарные процессы на Земле тесно переплетены, образуя общий, глобальный круговорот веществ, перераспределяющий энергию, поступающую от солнца. Он осуществляется через систему малых круговоротов. К большим и малым круговоротам подключаются тектонические процессы, обусловленные вулканической деятельностью и движением океанических плит в земной коре. В результате на Земле осуществляется большой геологический круговорот веществ.

Любой биологический круговорот характеризуется многократным включением атомов химических элементов в тела живых организмов и выходом их в окружающую среду, откуда они вновь захватываются растениями и вовлекаются в круговорот. Малый биологический круговорот характеризуется емкостью - количеством химических элементов, находящихся одновременно в составе живого вещества в данной экосистеме, и скоростью - количеством живого вещества, образующегося и разлагающегося в единицу времени.

Скорость биологических круговоротов на суше составляет годы и десятки лет, в водных экосистемах - несколько дней или недель.

Биологический круговорот суши и гидросферы объединяют круговороты отдельных ландшафтов посредством водного стока и атмосферных перемещений. Особенно важна роль циркуляции воды и атмосферы в объединении всех материков и океанов в единый круговорот биосферы.

Большой геологический круговорот вовлекает осадочные породы вглубь земной коры, надолго выключая содержащиеся в них элементы из системы биологического круговорота. В ходе геологической истории преобразованные осадочные породы, вновь оказавшись на поверхности Земли, постепенно разрушаются деятельностью живых организмов, воды и воздуха и снова включаются в биосферный круговорот.

Установлено, что в последние 600 млн. лет характер основных, круговоротов на Земле существенно не менялся. Осуществлялись фундаментальные геохимические процессы, характерные и для современной эпохи: накопление кислорода, связывание азота, осаждение кальция, образование кремнистых сланцев, отложение железных, марганцевых руд и сульфидных минералов, накопление фосфора. Менялись лишь скорости этих процессов. В общих чертах не менялся и общий поток атомов, вовлекаемых в живые организмы. Специалисты считают, что масса живого вещества оставалась приблизительно постоянной, начиная с каменноугольного периода, т. е. биосфера с тех пор поддерживает себя в определенном стабильном режиме круговоротов.

Стабильное состояние биосферы обусловлено деятельностью самого живого вещества, обеспечивающей определенную степень фиксации солнечной энергии (фотосинтез) и уровень биогенной миграции атомов.

Например, круговорот углерода начинается с фиксации атмосферной двуокиси углерода в процессе фотосинтеза. Часть образовавшихся в процессе фотосинтеза углеводов используется самими растениями для получения энергии, другая часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаются, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане.

Необходимо учитывать, что стабильность биосферы, как любой другой системы, имеет определенные пределы.

Человеческое общество, используя не только энергетические ресурсы биосферы, но и небиосферные источники энергии (например, ядерной), ускоряет геохимические преобразования на планете, вмешивается в ход биосферных процессов. Некоторые процессы, вызванные деятельностью человека, имеют противоположную направленность по отношению к естественным процессам (рассеивание руд металлов, углерода и других биогенных элементов, торможение минерализации и гумификации, освобождение углерода и его окисление, нарушение глобальных процессов в атмосфере, влияющих на климат, и т.д.).

В соответствии с этим одной из основных задач современной экологии является изучение регуляторных процессов в биосфере, создание научного фундамента ее рационального использования, поддержания ее стабильности.

21) Условия и факторы, обеспечивающие безопасную жизнедеятельность в окружающей среде. Естественные "питательные" циклы, механизмы саморегуляции, самоочищение биосферы. Возобновляемые и невозобновляемые природные ресурсы.

Поддержание жизнедеятельности организмов и круговорот веществ в экосистемах возможны только за счет постоянного притока энергии. Более 99% энергии, поступающей на поверхность Земли, составляет излучение Солнца. Эта энергия в огромном количестве растрачивается на физические и химические процессы в атмосфере, гидросфере и литосфере: перемешивание воздушных потоков и водных масс, испарение, перераспределение веществ, растворение минералов, поглощение и выделение газов.

Только 1/2000000 часть солнечной энергии достигает поверхности Земли, при этом 1-2% ее ассимилируется растениями. На Земле существует единственный процесс, при котором энергия солнечного излучения не только тратится и перераспределяется, но и связывается, запасается на очень длительное время. Этот процесс – создание органического вещества в ходе фотосинтеза. Сжигая в топках каменный уголь, мы освобождаем и используем солнечную энергию, запасенную растениями сотни миллионов лет назад.

Основная планетарная функция растений (аутотрофов) заключается в связывании и запасании солнечной энергии, которая затем расходуется на поддержание биохимических процессов в биосфере.

Гетеротрофы получают энергию с пищей. Все живые существа являются объектами питания других, т.е. связаны между собой энергетическими отношениями. Пищевые связи в биоценозах являются механизмом передачи энергии от одного организма к другому. Организмы любого вида являются потенциальным источником энергии для другого вида. В каждом сообществе трофические связи образуют сложную сеть. Однако энергия, поступившая в трофическую сеть, не может долго мигрировать в ней. Она может передаваться не более чем через 4-5 звеньев, т.к. в цепях питания существуют потери энергии. Место каждого звена в пищевой цепи называют трофическим уровнем.

Первый трофический уровень - это продуценты, создатели растительной биомассы; растительноядные животные (консументы 1-го порядка) относятся ко второму трофическому уровню; плотоядные животные, живущие за счет растительноядных форм – это консументы 2-го порядка; плотоядные, поедающие других плотоядных - консументы 3-го порядка и т.д.

Энергетический баланс консументов складывается следующим образом. Поглощенная пища обычно усваивается не полностью. Процент усвояемости зависит от состава пищи и наличия пищеварительных ферментов организма. У животных ассимилируется в процессе обмена веществ от 12 до 75% пищи. Неусвоенная часть пищи вновь возвращается во внешнюю среду (в виде экскрементов) и может быть вовлечена в другие цепи питания. Большая часть энергии, полученной в результате расщепления пищевых веществ, расходуется на физиологические процессы в организме, меньшая часть - трансформируется в ткани самого организма, т.е. расходуется на рост, увеличение массы тела, откладывание запасных питательных веществ.

Передача энергии в химических реакциях в организме происходит, согласно второму закону термодинамики, с потерей части ее в виде тепла. Особенно велики эти потери при работе мышечных клеток животных, коэффициент полезного действия которых очень низок.

Траты на дыхание также во много раз больше энергетических затрат на увеличение массы организма. Конкретные соотношения зависят от стадии развития и физиологического состояния особей. У молодых особей траты на рост больше, тогда как зрелые особи используют энергию практически исключительно на поддержание обмена веществ и физиологических процессов.

Таким образом, большая часть энергии при переходе от одного звена пищевой цепи к другому теряется, т.к. использована другим, следующим звеном, может быть, только энергия, заключенная в биомассе предыдущего звена. Подсчитано, что эти потери составляют около 90%, т.е. только 10% потребленной энергии аккумулируется в биомассе.

В соответствии с этим, запас энергии, накопленный в растительной биомассе, в цепях питания стремительно иссякает. Потерянная энергия может быть восполнена только за счет энергии Солнца, В связи с этим, в биосфере не может быть круговорота энергии, подобного круговороту веществ. Биосфера функционирует только за счет однонаправленного потока энергии, постоянного поступления ее извне в виде солнечного излучения,

Трофические цепи, которые начинаются с фотосинтезирующих организмов, называются цепями потребления, а цепи, которые начинаются с отмерших остатков растений, трупов и экскрементов животных - детритными цепями разложения.

Таким образом, поток энергии в биосфере разбивается на два основных русла, поступая к консументам через живые ткани растений или запасы мертвого органического вещества, источником которого также является фотосинтез.



Добавить свою цену в базу

Комментарий

Литосфера — это каменная оболочка Земли. От греческого «литос» — камень и «сфера» — шар

Литосфера - внешняя твердая оболочка Земли, которая включает всю земную кору с частью верхней мантии Земли и состоит из осадочных, изверженных и метаморфических пород. Нижняя граница литосферы нечеткая и определяется резким уменьшением вязкости пород, изменением скорости распространение сейсмических волн и увеличением электропроводности пород. Толщина литосферы на континентах и под океанами различается и составляет в среднем соответственно 25 - 200 и 5 - 100 км.

Рассмотрим в общем виде геологическое строение Земли. Третья за отдаленностью от Солнца планета - Земля имеет радиус 6370 км, среднюю плотность - 5,5 г/см3 и состоит из трех оболочек - коры , мантии и и. Мантия и ядро делятся на внутренние и внешние части.

Земная кора — тонкая верхняя оболочка Земли, которая имеет толщину на континентах 40-80 км, под океанами - 5-10 км и составляет всего около 1 % массы Земли. Восемь элементов - кислород, кремний, водород, алюминий, железо, магний, кальций, натрий - образовывают 99,5 % земной коры.

Согласно научным исследованиям, учёным удалось установить, что литосфера состоит из:

  • Кислорода – 49%;
  • Кремния – 26%;
  • Алюминия – 7%;
  • Железа – 5%;
  • Кальция – 4%
  • В состав литосферы входит немало минералов, самые распространённые – шпат и кварц.

На континентах кора трехслойная: осадочные породы укрывают гранитные, а гранитные залегают на базальтовых. Под океанами кора «океанического» , двухслойного типа; осадочные породы залегают просто на базальтах, гранитного пласта нет. Различают также переходный тип земной коры (островно-дуговые зоны на окраинах океанов и некоторые участки на материках, например Черное море) .

Наибольшую толщину земная кора имеет в горных районах (под Гималаями — свыше 75 км) , среднюю - в районах платформ (под Западно-Сибирской низиной - 35-40, в границах Русской платформы - 30-35), а наименьшую - в центральных районах океанов (5-7 км) . Преобладающая часть земной поверхности - это равнины континентов и океанического дна.

Континенты окружены шельфом- мелководной полосой глубиной до 200 г и средней шириной близко 80 км, которая после резкого обрывчастого изгиба дна переходит в континентальный склон (уклон изменяется от 15-17 до 20-30°). Склоны постепенно выравниваются и переходят в абиссальные равнины (глубины 3,7-6,0 км) . Наибольшие глубины (9-11 км) имеют океанические желоба, подавляющее большинство которых расположенная на северной и западной окраинах Тихого океана.

Основная часть литосферы состоит из изверженных магматических пород (95 %), среди которых на континентах преобладают граниты и гранитоиды, а в океанах-базальты.

Блоки литосферы - литосферные плиты - двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящен раздел геологии о тектонике плит.

Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium - кремний) и Al (лат. Aluminium - алюминий).

Литосферные плиты

Стоит отметить, что самые крупные тектонические плиты очень хорошо различимы на карте и ими являются:

  • Тихоокеанская – самая большая плита планеты, вдоль границ которой происходят постоянные столкновения тектонических плит и образуются разломы – это является причиной её постоянного уменьшения;
  • Евразийская – покрывает почти всю территорию Евразии (кроме Индостана и Аравийского полуострова) и содержит наибольшую часть материковой коры;
  • Индо-Австралийская – в её состав входит австралийский континент и индийский субконтинент. Из-за постоянных столкновений с Евразийской плитой находится в процессе разлома;
  • Южно-Американская – состоит из южноамериканского материка и части Атлантического океана;
  • Северо-Американская – состоит из североамериканского континента, части северо-восточной Сибири, северо-западной части Атлантического и половины Северного Ледовитого океанов;
  • Африканская – состоит из африканского материка и океанической коры Атлантического и Индийского океанов. Интересно, что соседствующие с ней плиты движутся в противоположную от неё сторону, поэтому здесь находится наибольший разлом нашей планеты;
  • Антарктическая плита – состоит из материка Антарктида и близлежащей океанической коры. Из-за того, что плиту окружают срединно-океанические хребты, остальные материки от неё постоянно отодвигаются.

Движение тектонических плит в литосфере

Литосферные плиты, соединяясь и разъединяясь, всё время изменяют свои очертания. Это даёт возможность учёным выдвигать теорию о том, что около 200 млн. лет назад литосфера имела лишь Пангею - один-единственный континент, впоследствии расколовшийся на части, которые начали постепенно отодвигаться друг от друга на очень маленькой скорости (в среднем около семи сантиметров в год).

Это интересно! Существует предположение, что благодаря движению литосферы, через 250 млн. лет на нашей планете сформируется новый континент за счёт объединения движущихся материков.

Когда происходит столкновение океанической и континентальной плит, край океанической коры погружается под материковую, при этом с другой стороны океанической плиты её граница расходится с соседствующей с ней плитой. Граница, вдоль которой происходит движение литосфер, называется зоной субдукции, где выделяют верхние и погружающиеся края плиты. Интересно, что плита, погружаясь в мантию, начинает плавиться при сдавливании верхней части земной коры, в результате чего образуются горы, а если к тому же прорывается магма – то и вулканы.

В местах, где тектонические плиты соприкасаются друг с другом, расположены зоны максимальной вулканической и сейсмической активности: во время движения и столкновения литосферы, земная кора разрушается, а когда они расходятся, образуются разломы и впадины (литосфера и рельеф Земли связаны друг с другом). Это является причиной того, что вдоль краёв тектонических плит расположены наиболее крупные формы рельефа Земли – горные хребты с активными вулканами и глубоководные желоба.

Проблемы литосферы

Интенсивное развитие промышленности привело к тому, что человек и литосфера в последнее время стали чрезвычайно плохо уживаться друг с другом: загрязнение литосферы приобретает катастрофические масштабы. Произошло это вследствие возрастания промышленных отходов в совокупности с бытовым мусором и используемыми в сельском хозяйстве удобрениями и ядохимикатами, что негативно влияет на химический состав грунта и на живые организмы. Учёные подсчитали, что за год на одного человека припадает около одной тонны мусора, среди которых – 50 кг трудноразлагаемых отходов.

Сегодня загрязнение литосферы стало актуальной проблемой, поскольку природа не в состоянии справиться с ней самостоятельно: самоочищение земной коры происходит очень медленно, а потому вредные вещества постепенно накапливаются и со временем негативно воздействуют и на основного виновника возникшей проблемы – человека.

Табл. 1. Оболочки Земли

Название

АТМОСФЕРА

ГИДРОСФЕРА

БИОСФЕРА

Описание

Воздушная оболочка, нижние границы которой проходят по поверхности гидросферы и литосферы, а верхняя находится на расстоянии около 1 тыс. км. В состав входит ионосфера, стратосфера и тропосфера.

Занимает 71 % поверхности Земли. Средняя соленость - 35 г/л, температура колеблется от 3-32 °С. Солнечные лучи проникают на глубину до 200 м, а ультрафиолетовые - до 800 м.

Включает в себя все живые организмы, которые заселяют атмосферу, гидросферу и литосферу.

Название

ЛИТОСФЕРА

ПИРОСФЕРА

ЦЕНТРОСФЕРА

Описание

Твердая, каменная оболочка, высотой 5-80 км.

Огненная оболочка, которая находится непосредственно под литосферой.

Называют еще ядром Земли. Находится на глубине 1800 км. Состоит из металлов: железа (Fe), никеля (Ni).

Определение. Литосфера - это твердая оболочка Земли, состоящая из земной коры и верхнего слоя - мантии. Толщина ее различна, например, на материках - от 40-80 км, а под морями и океанами - 5-10 км. В состав земной коры входит восемь элементов (табл. 2, рис. 2-9).

Табл. 2. Состав земной коры

Наименование

Изображение

Наименование

Изображение

Кислород (О 2)

Рис. 2. Кислород ()

Железо (Fe)

Кремний (Si)

Магний (Mg)

Водород (Н 2)

Кальций (Ca)

Алюминий (Al)

Рис. 5. Алюминий ()

Натрий (Na)

Литосфера Земли неоднородна. Многие ученые считают, что она разделена глубоководными разломами на отдельные кусочки - плиты. Эти плиты находятся в постоянном движении. Благодаря смягченному слою мантии это движение не заметно человеку, поскольку происходит оно очень медленно. Но, когда плиты сталкиваются, появляются землетрясения, могут образовываться вулканы, горные хребты. В целом, общая площадь суши Земли составляет 148 млн км 2 , из которых 133 млн км 2 пригодны для жизни.

Определение. Почва - это верхний плодородный слой земли, который является средой обитания для многих живых организмов. Почва - это связующее звено между гидро-, лито- и атмосферой. Литосфера необходима растениям, грибам, животным и человеку, поэтому так важно ее оберегать и охранять. Рассмотрим основные источники загрязнения литосферы (Табл. 3, рис. 10-14).

Табл. 3. Источники загрязнения литосферы

Описание

Изображение

Жилые дома и коммунальные предприятия , от которых остается большое количество строительного мусора, пищевых отходов.

Рис. 10. Мусор, отходы ()

Негативное воздействие оказывают и промышленные предприятия , потому что их жидкие, твердые и газообразные отходы попадают в литосферу.

Рис. 11. Отходы промышленных предприятий ()

Воздействие сельского хозяйства , выражается в загрязнении биологическими отходами и ядохимикатами.

Рис. 12. Отходы сельского хозяйства ()

Радиоактивные отходы, в результате Чернобыльской катастрофы и продукты выброса и полураспада радиоактивных веществ пагубно сказываются на любом живом организме.

Рис. 13. Радиоактивные отходы ()

Выхлопные газы , исходящие от транспорта, которые оседают в почве и попадают в круговорот веществ.

Рис. 14. Выхлопные газы ()

Выхлопные газы содержат много тяжелых металлов. Так, ученые подсчитали, что наибольшее количество тяжелых металлов приходится на те почвы, которые находятся в непосредственной близости от автомобильных дорог, в них концентрация тяжелых металлов может быть больше нормы в 30 раз. Примеры тяжелых металлов: свинец (Pb), медь (Cu), кадмий (Cd).

Каждый человек должен понимать то, как важно сохранить среду обитания живых организмов максимально чистой. С этой целью многими учеными разрабатываются методы борьбы с загрязнителями (Табл. 4).

Табл. 4. Методы борьбы с загрязнителями

Характеристика метода

Организация санкционированных свалок , которые занимают огромные площади, а те отходы, что на них находятся, требуют длительной переработки с участием микроорганизмов и кислорода. Соответственно, в атмосферу Земли выделяются вредные токсичные вещества.

Также это приводит к размножению грызунов и насекомых, которые являются переносчиками заболеваний.

Более эффективным способом является организация мусоросжигательных заводов , хотя при сжигании отходов в атмосферу Земли также выделяются токсины. Их пробовали очищать с помощью воды, но тогда эти вещества попадают в гидросферу.

Самым лучшим методом является организация мусороперерабатывающих заводов , при этом часть отходов перерабатывается в компост, который может быть использован в сельском хозяйстве. Часть некомпостируемых веществ может вторично использоваться. Примеры: пластмассы, стекла.

Таким образом, утилизация отходов - проблема всего человечества: как отдельных государств, так и каждого человека.

Определение. Гидросфера - водная оболочка Земли (Схема 1).

Схема 1. Состав гидросферы

95,98 % - моря и океаны;

2 % - ледники;

2 % - подземные воды;

0,02 % - воды суши: реки, озера, болота.

Гидросфера играет важнейшую роль в жизни планеты. Она накапливает тепло и распределяет его по всем материкам. Также с поверхности Мирового океана образуются газообразные пары воды, которые впоследствии выпадают вместе с осадками на сушу. Таким образом, гидросфера взаимодействует и с атмосферой, образуя облака, и с литосферой, выпадая вместе с осадками на землю.

Вода - уникальное вещество, без которого не может обойтись ни один организм, поскольку она участвует во всех обменных процессах. Вода на земле может быть в разных агрегатных состояниях.

Когда-то давно именно в воде зародились самые первые живые организмы. И даже в наши дни все живые организмы находятся в тесной взаимосвязи с водой.

Производства и промышленные предприятия стараются сосредоточить в непосредственной близости от водоемов: рек или крупных озер. В современном мире вода - основной фактор, определяющий производство, а зачастую и участвующий в нем.

Важность гидросферы трудно переоценить, особенно сейчас, когда темпы роста водоснабжения и водопотребления увеличиваются с каждым днем. Многие государства не имеют питьевой воды в требуемом количестве, поэтому наша задача - сохранить воду чистой.

Рассмотрим основные источники загрязнения гидросферы (табл. 5).

Табл. 5. Источники загрязнения гидросферы

Табл. 6. Меры сохранности чистой воды

На сегодня человеческий фактор является основным воздействующим звеном на природу, на все без исключения живые организмы. Но мы не должны забывать, что биосфера сможет обойтись и без нас, а вот мы без нее жить не сможем. Нам нужно научиться жить в гармонии с природой, а для этого необходимо воспитать экологическое мышление.

Следующий урок будет посвящен мерам, которые предпринимают для сохранения жизни на Земле.

Список литературы

  1. Мельчаков Л.Ф., Скатник М.Н., Природоведение: учеб. для 3, 5 кл. сред. шк. - 8-е изд. - М.: Просвещение, 1992. - 240 с.: ил.
  2. Пакулова В.М., Иванова Н.В. Природа: неживая и живая 5. - М.: Дрофа.
  3. Еськов К.Ю. и др./ под ред. Вахрушева А.А. Природоведение 5. - М.: Баласс.
  1. Referat.znate.ru ().
  2. Miteigi-nemoto.livejournal.com ().
  3. Dinos.ru ().

Домашнее задание

  1. Мельчаков Л.Ф., Скатник М.Н., Природоведение: Учеб. для 3, 5 кл. сред. шк. - 8-е изд. - М.: Просвещение, 1992. - с. 233, вопросы задания. 1 - 3.
  2. Расскажите о том, что вам известно о методах борьбы с загрязнителями литосферы.
  3. Расскажите о методах сохранности чистой гидросферы.
  4. * Подготовьте реферат

Строение Земли - это совокупность, взаимодействие и зависимость друг от друга ее основных оболочек. Если бы на планете не было людей, то, возможно, ее поверхность сегодня выглядела бы иначе. На протяжении миллионов лет создавались эти оболочки, благодаря которым смогла появиться и развиться жизнь, а общие признаки литосферы, гидросферы, атмосферы, биосферы, присущие им, в настоящее время указывают на сильнейшее антропогенное воздействие на них деятельности людей.

Сферы Земли

Если рассматривать строение планеты с точки зрения ее ландшафтной сферы, то можно увидеть, что она включает в себя не только всем известную поверхность земной коры, но и несколько «соседних» оболочек. Именно такая тесная связь между границами обуславливает общие признаки, свойственные атмосфере, гидросфере, литосфере и биосфере. Они проявляются в постоянном обмене жидких, твердых и газообразных компонентов, присущих каждой из оболочек. Например, круговорот воды в природе - это обмен между гидросферой и атмосферой.

Если происходит извержение вулкана с выбросом пепла в воздух - это взаимосвязь литосферы с нижними слоями атмосферы, хотя некоторые катаклизмы могут быть такой мощности, что почти достигать ее средней части. В том случае, если вулкан расположен на острове или на дне океана, то будут задействованы все оболочки Земли, и атмосфера, и гидросфера, и литосфера, и биосфера. Последняя чаще всего выражена гибелью растительности и животного мира в радиусе действия природного катаклизма.

Условно сферы Земли можно разделить на 4 части: атмосферу, биосферу, гидросферу, литосферу, но некоторые из них состоят из нескольких составляющих.

Атмосфера

Атмосферой называют всю внешнюю газообразную сферу планеты, окружающую ее вплоть до вакуума в космосе. Если следующие оболочки Земли - литосфера, гидросфера, атмосфера, биосфера - взаимодействуют друг с другом, то о некоторых из их частей этого сказать нельзя. Атмосфера делится на 3 области, каждой из которых выделена своя высота, например:


Наибольший интерес для ученых и защитников природы представляет нижняя область тропосферы.

Гидросфера

Расположенное на поверхности земной коры и под ней водное пространство называется гидросферой. Это совокупность всех вод, как пресных, так и соленых, которые есть на планете. Глубина некоторых водоемов может достигать 3,5 км, что присуще океанам, а в некоторых участках, именуемых впадинами, даже углубляться более чем на 10 км. Самый глубокий из известных подводных «желобов» - это Марианская впадина, которая по данным на 2011 год уходит вниз на 10 994 м.

Так как от качества воды зависит жизнь на Земле, то гидросфера так же важна, как и воздух, вот почему все большее количество ученых-экологов обеспокоено следствием воздействия людей на эти сферы. Из воды на планете не только появилось все сущее, но от нее также зависит, чтобы на ней оставалась жизнь.

Ученые смогли доказать, что на месте, например, Сахары были прерии, которые пересекали полноводные реки. Когда вода покинула эту местность, ее постепенно заполнили пески. Если рассматривать, какие общие признаки у гидросферы, атмосферы, литосферы, биосферы, то можно заметить, что они напрямую зависят друг от друга, и все они влияют на существование жизни на Земле.

Если происходит экологическая катастрофа, из-за которой пересыхают реки (гидросфера), то страдают растительность и животные в этом регионе (биосфера), меняется состояние воздуха (атмосфера), и поверхность

Биосфера

Эта оболочка появилась с момента возникновения жизни на планете. Понятие "биосфера" было введено в качестве термина лишь в конце XIX века, и оно заключало в себя все формы и виды жизни, существующие на Земле.

У нее особенно крепкая связь с остальными оболочками планеты. Так различные микроорганизмы обнаружены в нижней части атмосферы. Люди, животные, птицы, насекомые и растения обитают на поверхности и под землей (литосфера). Реки, моря, озера и океаны (гидросфера) населяют пресноводные и морские рыбы, микроорганизмы, растения и животные.

Граница биосферы, как правило, определяется условиями, в которых могут находиться живые организмы, и они способны меняться. Так, например, в океанах жизнь протекает во всех слоях вплоть до их дна. Каждому слою присущ свой «набор» существ и микроорганизмов, что связано с насыщением солью воды и уровнем давления водяного столба. Чем ближе дно, тем оно выше.

Признаки биосферы (по-другому, сфера жизни) обнаружены на высоте 20 км выше уровня моря и на глубине 3 км от поверхности Земли.

Литосфера

«Литос» в переводе с греческого означает «камень», поэтому вся земная кора, представляющая собой каменные породы, была названа литосферой. У нее две части:

  1. Верхний покров - это осадочные породы, содержащие в своем составе гранит.
  2. Нижний уровень - это базальтовые породы.

Меньшая часть литосферы (всего 30 %) приходится на сушу, остальная покрыта водами Мирового океана. Связь литосферы с атмосферой, гидросферой, биосферой заключается в верхнем почвенном слое. Там развивается растительность и животная жизнь (биосфера), в ней живут аэробные бактерии, которым нужен воздух (атмосфера), осуществляется питание грунтовыми водами и в виде осадков (гидросфера).

Воздействие человека на атмосферу

Выше были перечислены основные признаки литосферы, гидросферы, атмосферы, биосферы. Так как они очень плотно взаимодействуют, то влияние на одну из них сразу же отражается на других. Это связано с тем, что общим признаком всех этих оболочек Земли является наличие в них жизни.

Сегодня можно наблюдать, какой вред нанесла деятельность людей на сферы планеты. Так выбросы в атмосферу вредных веществ, вырубка амазонских джунглей, запуск ракет и взлеты самолетов каждый день постепенно разрушают озоновый Если он станет меньше (сегодня его размер порядка 8 км), то все живое на планете может либо мутировать, либо погибнуть.

Если верить археологам, то Земля уже испытывала подобные потрясения, но в те далекие времена она не была населена людьми. В наше время все по-другому. Еще не так давно существовали города, где уровень выбросов выхлопных газов из автомобилей был столь высок, что люди вынуждены ходить по улицам в масках. Ученые и энтузиасты-экологи смогли «достучаться» до общественности, чтобы повернуть угрожающую ситуацию вспять.

Все больше стран, понимая, что качество жизни напрямую зависит от чистоты воздуха, которым дышит их население, переходят на альтернативные источники энергии, внедряют в повседневную жизнь электромобили, закрывают или модернизируют вредные производства. Это вселяет надежду, что у будущих поколений землян будет чистый воздух.

Человек и гидросфера

Не меньший вред люди нанесли и водным ресурсам планеты. Учитывая, что всего 3 % воды являются пресными, то есть пригодными для жизни, то человечество опять под угрозой. Тесная связь гидросферы с остальными оболочками Земли осуществляется через круговорот воды в природе.

Если какой-то водоем загрязнен, то испарившаяся с его поверхности вода может пролиться зараженным дождем в любой части света, нанося урон почве (литосфере), живой природе (биосфере), превращаться в ядовитый туман (атмосфера).

Хотя в работе по очистке и сохранению природных ресурсов планеты принимают участие многие государства, этого пока еще недостаточно. Всем хорошо известны проблемы с чистой питьевой водой в странах Африки и Азии, население которых болеет именно по причине загрязнения местных водоемов.

Нарушение человеком оболочек Земли

Так как все сферы планеты взаимосвязаны и обладают общим признаком - наличием жизни в них, то дисбаланс в одной тут же отражается на остальных. Углубление людей в недра Земли ради добычи полезных ископаемых, выбросы в атмосферу вредных химических веществ, разливы нефти в морях и океанах - все это приводит к тому, что каждый день исчезает или находится под угрозой исчезновения животный и растительный мир (биосфера).

Если человечество не остановит свою вредительскую деятельность, то спустя несколько сотен лет нарушения в оболочках планеты будут столь существенны, что все живое на планете вымрет. Примером может стать та же пустыня Сахара, которая когда-то была цветущим краем, в котором проживали первобытные люди.

Заключение

Каждый миг оболочки Земли обмениваются между собой своими составляющими. Они существуют уже миллиарды лет, взаимодействуя друг с другом. Выше были даны определения литосферы, атмосферы, гидросферы, биосферы, и пока люди не поймут, что планета - это живой организм, и если удалить в нем один «орган», тут же страдает все тело, то смертность населения будет только увеличиваться.

Мантия Земли - оболочка «твёрдой» Земли, расположенная между земной корой и ядром Земли. Занимает 83 % Земли (без атмосферы) по объёму и 67 % по массе.

От земной коры её отделяет Мохоровичича поверхность, на которой скорость продольных сейсмических волн при переходе из коры в мантию земли возрастает скачком с 6,7-7,6 до 7,9-8,2 км/сек; от ядра Земли мантию отделяет поверхность (на глубине около 2900 км), на которой скорость сейсмических волн падает с 13,6 до 8,1 км/сек. Мантия Земли делится на нижнюю и верхнюю мантию. Последняя, в свою очередь, делится (сверху вниз) на субстрат, слой Гутенберга (слой пониженных скоростей сейсмических волн) и слой Голицына (иногда называется средней мантией). У подошвы мантия Земли выделяется слой толщиной менее 100 км, в котором скорости сейсмических волн не растут с глубиной или даже слегка понижаются.

Предполагается, что мантия Земли слагается теми химическими элементами, которые во время образования Земли находились в твёрдом состоянии или входили в состав твёрдых химических соединений. Из этих элементов преобладают: О, Si, Mg, Fe. Согласно современным представлениям, состав мантии Земли считается близким к составу каменных метеоритов. Из каменных метеоритов наиболее близкий к мантия Земли состав имеют хондриты. Предполагают, что непосредственными образцами вещества мантии являются обломки пород среди базальтовой лавы, вынесенные на поверхность Земли; их находят также вместе с алмазами в трубках взрыва. Считают также, что обломки пород, поднятые драгой со дна рифтов Срединно-океанических хребтов, представляют собой вещество мантии.

Характерной чертой мантия Земли являются, по-видимому, фазовые переходы. Экспериментально установлено, что в оливине под большим давлением изменяется структура кристаллической решётки, появляется более плотная упаковка атомов, так что объём минерала заметно уменьшается. В кварце такой фазовый переход наблюдается дважды по мере роста давления; самая плотная модификация на 65 °C плотнее обычного кварца. Такие фазовые переходы считаются главной причиной того, что в слое Голицына скорости сейсмических волн очень быстро возрастают с глубиной.

Верхняя мантия одна из оболочек земного шара, непосредственно подстилающая земную кору. Отделена от последней Мохоровичича поверхностью, находящейся под материками на глубине от 20 до 80 км (в среднем 35 км) и под океанами на глубине 11-15 км от поверхности воды. Скорость распространения сейсмических волн (используемая в качестве косвенного метода изучения внутреннего строения Земли) возрастает при переходе от земной коры к верхней мантиискачкообразно приблизительно с 7 до 8 км/сек.Верхняя мантияпредполагается на глубине 900 км (при делении мантии на верхнюю и нижнюю) и на глубине 400 км (при делении её на верхнюю, среднюю и нижнюю). Зона в пределах глубин 400-900 км называется Голицына слоем. Верхняя мантиясложена, вероятно, гранатовыми перидотитами с примесью в верхней части Эклогита.

Эклогит - метаморфическая горная порода состоящая из пироксена с высоким содержанием кварца и рутила (минерал, содержащий примесь железа, олова, ниобия и тантала ТіО 2 - 60 % титана и 40 % кислорода).

Важная особенность строения верхней мантии- наличие зоны пониженных скоростей сейсмических волн. Имеются различия в строении верхней мантиипод разными тектоническими зонами, например под геосинклиналями и платформами. В верхней мантии развиваются процессы, являющиеся источником тектонических, магматических и метаморфических явлений в земной коре. Во многих тектонических гипотезах верхней мантии отводится важная роль; например, предполагается, что земная кора образовалась путём выплавления из вещества верхней мантии, что тектонические движения связаны с движениями в верхней мантии и др. Образцы самой верхней части мантии Земли состоят преимущественно из пород ультраосновного (перидотит и пироксенит) и основного (эклогит) состава. Обычно считается, что мантия Земли почти полностью сложена оливином [(Mg, Fe) 2 SiO 4 ], в котором сильно преобладает магниевая компонента (форстерит), но с глубиной, быть может, возрастает доля железной составной части (фаялита). Австралийский петрограф Рингвуд предполагает, что мантия Земли сложена гипотетической породой, которую он назвал пиролитом и которая по составу соответствует смеси из 3 частей периодита и 1 части базальта. Теоретические расчёты показывают, что в нижней мантии Земли минералы должны распадаться на окислы. К началу 70-х годов 20 века появились также данные, указывающие на наличие в мантии Земли горизонтальных неоднородностей.

Несомненно, что земная кора выделилась из мантии Земли; процесс дифференциации мантия Земли продолжается и сейчас. Есть предположение, что и земное ядро разрастается за счёт мантии Земли. Процессы в земной коре и мантия Земли тесно связаны; в частности, энергия для тектонических движений земной коры, по-видимому, поступает из мантии Земли.

Нижняя мантия Земли - составная часть мантии Земли, распространяющаяся от глубин 660 (граница с верхней мантией) до 2900 км. Расчетное давление в нижней мантии составляет 24-136 ГПа и вещество нижней мантии недоступно для прямого изучения.

В нижней мантии существует слой (слой D), в которой скорость сейсмических волн аномально низка и имеет горизонтальные и вертикальные неоднородности. Предполагается, что он образован восходящим проникновением Fe и Ni в силикаты, которые расплавляются этими потоками. Это чрезвычайно важно, так как некоторые исследователи полагают, что части субдукционной плиты накапливаются на 660 км от границы, и они становятся экспоненциально более тяжелыми и опускаются на ядро и накапливаются в слое D.

Земная кора - самая верхняя из твёрдых оболочек Земли. Нижней границей земной коры считается поверхность раздела, при прохождении которой сверху вниз продольные сейсмические волны скачком увеличивают скорость с 6,7-7,6 км/сек до 7,9-8,2 км/сек (см. Мохоровичича поверхность). Это служит признаком смены менее упругого материала более упругим и более плотным. Слой верхней мантии, подстилающий земной коры, часто называется субстратом. Вместе с земной коры он составляет литосферу. Земная кора различна на материках и под океаном. Материковая земная кора обычно имеет толщину 35-45 км, в областях горных стран - до 70 км. Верхнюю часть материковой земной коры составляет прерывистый осадочный слой, состоящий из разновозрастных неизмененных или слабоизменённых осадочных и вулканических горных пород. Слои нередко смяты в складки, разорваны и смещены по разрыву. В некоторых местах (на щитах) осадочная оболочка отсутствует. Вся остальная толща материковой земной коры разделяется по скоростям сейсмических волн на 2 части с условными названиями: для верхней части - «гранитный» слой (скорость продольных волн до 6,4 км/сек), для нижней -«базальтовый» слой (6,4-7,6 км/сек). По-видимому, «гранитный» слой сложен гранитами и гнейсами, а «базальтовый» слой - базальтами, Габбро и очень сильно метаморфизованными осадочными породами в различных соотношениях. Эти 2 слоя часто разделены Конрада поверхностью, при переходе которой скорости сейсмических волн возрастают скачком. По-видимому, в земной коре с глубиной уменьшается содержание кремнезёма и возрастает содержание окислов железа и магния; ещё в большей степени это имеет место при переходе от земной коры к субстрату.

Океаническая земная кора имеет толщину 5-10 км (вместе с толщей воды - 9-12 км). Она разделяется на три слоя: под тонким (менее 1 км) слоем морских осадков лежит «второй» слой со скоростями продольных сейсмических волн 4-6 км/сек; его толщина 1-2,5 км. Вероятно, он сложен серпентинитом и базальтом, быть может, с прослоями осадков. Нижний, «океанический», слой толщиной в среднем около 5 км имеет скорости прохождения сейсмических волн 6,4-7,0 км/сек; вероятно, он сложен габбро. Толщина слоя осадков на дне океана изменчива, местами их нет совсем. В переходной зоне от материка к океану наблюдается земная кора промежуточного типа.

Земная кора подвержена постоянным движениям и изменениям. В её необратимом развитии подвижные области - геосинклинали - превращаются путём длительных преобразований в относительно спокойные области – платформы. Существует ряд тектонических гипотез, объясняющих процесс развития геосинклиналей и платформ, материков и океанов и причины развития земной коры в целом. Несомненно, что главные причины развития земной коры лежат в более глубоких недрах Земли; поэтому изучение взаимодействия земной коры и верхней мантии представляет особенный интерес.

Земная кора близка к состоянию изостазии (равновесию): чем тяжелее, т. е. толще или плотнее какой-либо участок земной коры, тем глубже он погружен в субстрат. Тектонические силы нарушают изостазию, но когда они слабеют, земной коры возвращается к равновесию.

Рисунок 25 - Земная кора

Ядро Земли - центральная геосфера радиусом около 3470 км. Существование ядра Земли установлено в 1897 немецким сейсмологом Э. Вихертом, глубина залегания (2900 км) определена в 1910 американским геофизиком Б. Гутенбергом. О составе ядра Земли и его происхождении единого мнения нет. Возможно, оно состоит из железа (с примесью никеля, серы, кремния или других элементов) или его окислов, которые под действием высокого давления приобретают металлические свойства. Существуют мнения, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже (впервые высказано норвежским геофизиком В. М. Гольдшмидтом в 1922) либо железное ядро возникло ещё в протопланетном облаке (немецкий учёный А. Эйкен, 1944, американский учёный Э. Орован и советский учёный А. П. Виноградов, 60-70-е гг.).

Мохоровичича поверхность - граница раздела между земной корой и мантией Земли.Мохоровичича поверхность установлена по сейсмическим данным: скорость продольных сейсмических волн при переходе (сверху вниз) через Мохоровичича поверхность возрастает скачком с 6,7-7,6 до 7,9-8,2 км/сек, а поперечных - с 3,6-4,2 до 4,4-4,7 км/сек. Различные геофизические, геологические и др. данные указывают на то, что плотность вещества тоже возрастает скачком, предположительно, с 2,9-3 до 3,1-3,5 т/м 3 . Наиболее вероятно, что Мохоровичича поверхность разделяет слои разного химического состава. Мохоровичича поверхность названа по имени открывшего её А. Мохоровичича.

Из первых трех геосфер ведущая роль, несомненно, принадлежит земной коре, так как её общая масса многократно превосходит суммарную массу двух других оболочек. Поэтому данные об относительном содержании того или иного химического элемента в земной коре можно в значительной мере считать и отражающими его содержание в биосфере в целом.

Наружная твердая оболочка Земли - земная кора более чем на 99% сложена всего 9 основными элементами: O (47%), Si (29,5%), Al (8,05%), Fe (4,65%), Ca (2,96%), Na (2,50%), K (2,50%), Mg (1.87%), Ti (0,45%). В сумме – 99, 48%. Из них кислород является абсолютно преобладающим. Наглядно видно, сколько остаётся на все остальные элементы. Это – по массе, т.е в весовых процентах.

Есть и другой вариант оценки – по объёму (объёмные проценты). Вычисляется с учётом размеров атомных и ионных радиусов в конкретных минеральных соединениях, образуемых этими элементами. Содержания в земной коре наиболее распространённых элементов в объёмных процентах составляют (по В.М. Гольдшмидту): O – 93,77%, K – 2,14%, Na – 1,60%, Ca – 1,48%, Si – 0,86%, Al – 0,76%, Fe – 0,68%, Mg – 0,56%, Ti – 0,22%.

Очевидны достаточно существенные различия в распределении атомов химических элементов по весу и объему: в резком понижении относительного содержания Al и особенно Si (из-за малых размеров их атомов, а для кремния – в ещё большей мере ионов в его кислородных соединениях) ещё более явно подчеркивается ведущая роль кислорода в литосфере.

При этом выявлены «аномалии» в содержаниях некоторых элементов в литосфере:

«провал» в содержаниях наиболее лёгких элементов (Li, Be, B) – объясняется особенностями процесса нуклеосинтеза (преимущественное образование углерода в результате соединения сразу трёх ядер гелия); относительно высокие содержания элементов, являющихся продуктами радиоактивного распада (Pb, Bi, а также Ar среди инертных газов).

В условиях Земли аномально низки содержания еще двух элементов: H и He. Это связано с их «летучестью». Оба эти элемента – газы, и, к тому же, самые легкие. Поэтому атомарные водород и гелий имеют тенденцию перемещаться в верхние слои атмосферы, а оттуда, не удерживаясь земным тяготением, рассеиваются в космическом пространстве. Водород до сих пор не потерян полностью, так как большая его часть входит в состав химических соединений – воды, гидрооксидов, гидрокарбонатов, гидросиликатов, органических соединений и др. А гелий, являющийся инертным газом, постоянно образуется как продукт радиоактивного распада тяжелых атомов.

Таким образом, земная кора по существу является упаковкой анионов кислорода, связанных друг с другом кремнием и ионами металлов, т.е. она состоит почти исключительно из кислородных соединений, преимущественно, из силикатов алюминия, кальция, магния, натрия, калия и железа. При этом, как Вы уже знаете, в составе литосферы 86,5% приходится на чётные элементы.

Наиболее распространенные элементы принято называть макроэлементами.

Элементы же, содержание которых составляет сотые доли процента и менее называются микроэлементами. Понятие это относительное, так как конкретный элемент может быть микроэлементом в одной среде, а в другой относиться к основным, т.е. макроэлементам (Например, Al в организмах –микроэлемент, а в литосфере - макроэлемент, железо в почвах – макроэлемент, а в живых организмах - микроэлемент).

Для обозначения величины содержания конкретного элемента в той или иной среде используется понятие «кларк». Этот термин связан с именем Ф.У. Кларка – американского геохимика, впервые предпринявшего на базе обширного аналитического материала вычисление средних содержаний химических элементов в различных типах горных пород и в литосфере в целом. В память о его вкладе А.Е. Ферсман в 1924 г. предложил именовать среднее содержание любого конкретного элемента в определённой вещественной среде кларком этого химического элемента. Единица измерения кларка – г/т (т.к. при низких величинах кларков многих элементов использовать процентные значения неудобно).

Наиболее сложной задачей является определение кларков для литосферы в целом, так как её строение очень.

Внутри горных пород деление силикатов производится на кислые и основные.

В кислых относительно повышены концентрации Li, Be, Rb, TR, Ba, Tl, Th, U, Ta.

В основных – Cr, Sc, Ni, V, Co, Pt.

Приведем порядок кларков различных элементов по В.Ф. Барабанову:

Более 10 000 г/т - O, Si, Al, Fe, Ca, Mg, Na, K.

1000-10 000 - Mn, Ti.

100-1000 - C, F, P, S, Cl, Rb, Sr, Zr, Ba.

10-100 - Pb, Th, Y, Nb, La, Ce, Nd, Li, B, N, Sc, V, Cr, Co, Ni, Cu, Zn, Ga.

1-10 - Eu, Dy, Ho, Er, Yb, Hf, Ta, W, Tl, U, Ge, As, Br, Mo, Sn, Sc, Pm, Sm, Be.

0,1-1,0 - Cd, Bi, In, Tu, I, Sb, Lu.

0,01-0,1 - Ar, Se, Ag, Hg.

0,001-0,01 - Re, Os, Ir, Ru, Rh, Pd, Te, Pt, He, Au.

По этой градации элементы, имеющие кларки выше 1000 г/т будут относиться к макроэлементам. Те, у которых кларки ниже – микроэлементы.

Учёт кларков безусловно необходим для правильного понимания закономерностей процессов миграции химических элементов. Различная распространённость элементов в природе имеет неизбежным следствием для многих из них наличие существенных различий в их поведении в лабораторных условиях и в природе. С уменьшением кларка снижается активная концентрация элемента, становится невозможным выпадение самостоятельной твёрдой фазы из водных растворов и других способов образования самостоятельных минеральных видов. Поэтому способность к самостоятельному минералообразованию зависит не только от химических свойств элемента, но и от его кларка.

Примеры: S и Se – химически полные аналоги, а их поведение в природных процессах различно. S – ведущий элемент многих природных процессов. Сероводород играет большую роль в химических процессах, происходящих в донных осадках и в глубинах земной коры, в формировании месторождений ряда металлов. Сера формирует самостоятельные минералы (сульфиды, сульфаты). Селеноводород существенной роли в природных процессах не играет. Селен находится в рассеянном состоянии как примесь в минералах, образуемых другими элементами. Аналогичны различия К и Cs, Si и Ge.

Одно из важнейших отличий геохимии от химии в том, что геохимия рассматривает только те химические взаимодействия, которые реализуются в конкретных природных условиях. Кроме того - учёт кларков (по крайней мере их порядков) в этом смысле является первоочередным требованием при любых геохимических построениях.

Существуют, и даже достаточно распространены самостоятельные минеральные фазы целого ряда элементов с низкими кларками. Причина в том, что в природе существуют механизмы, позволяющие обеспечивать формирование повышенных концентраций тех или иных элементов, в результате чего их содержание в каких-то участках могут многократно превышать кларковые. Поэтому кроме кларка элемента нужно учитывать и величину его концентрации в сравнении с кларковым содержанием.

Кларк концентрации – это соотношение содержания химического элемента в данном конкретном природном вещественном агрегате (горной породе и т.п.) к его кларку.

Примеры коэффициентов концентрации некоторых химических элементов в их рудных месторождениях: Al – 3,7; Mn – 350; Cu – 140; Sn – 250; Zn – 500; Au – 2000.

На этом основании элементы с низкими кларками подразделяются на две уже известные вам качественно различные группы. Те, для распределения которых не характерны высокие значениями КК, называются рассеянными (Rb, Ga, Re, Cd и др.). Способные формировать повышенные концентрации с высокими значениями КК – редкими (Sn, Be и др.).

Различиями в достигаемых величинах КК обусловлена разная роль тех или иных элементов в истории материально-технической деятельности человечества (с древности известные металлы с низкими кларками Au, Cu, Sn, Pb, Hg, Ag … - и более распространённые Al, Zr…).

Большую роль в процессах концентрации и рассеяния элементов в земной коре играет изоморфизм - свойство элементов замещать друг друга в структуре минерала. Изоморфизм – это способность близких по свойствам химических элементов замещать друг друга в переменных количествах в кристаллических решётках. Конечно, она свойственна не только микроэлементам. Но именно для них, в особенности для элементов рассеянных, она приобретает ведущее значение как основной фактор закономерности их распределения. Различают изоморфизм совершенный – когда взаимозаменяемые элементы могут замещать друг друга в любых соотношениях (ограничиваясь только соотношениями содержаний этих элементов в системе), и несовершенный – когда замещение возможно только до определённых пределов. Естественно, что чем ближе химические свойства, тем совершеннее изоморфизм.

Различают изоморфизм изовалентный и гетеровалентный.

Общность типа химической связи – то, что химики называют степенью ионности – ковалентности. Пример: хлориды и сульфиды – не изоморфны, а сульфаты с манганатами – изоморфны.

Механизм изовалентного изоморфизма. Однотипность химической формулы образуемых соединений и формируемой кристаллической решётки. То есть, если рубидий потенциально способен формировать соединения с теми же элементами, что и калий, и кристаллическая структура таких соединений однотипна, то атомы рубидия способны замещать атомы калия в его соединениях.

Подразделение химических элементов на макро- и микроэлементы, а последних – на редкие и рассеянные имеет большое значение, так как в природе далеко не все химические элементы образуют самостоятельные соединения. Это присуще главным образом элементам с высокими кларками, или с низкими, но способным локально формировать высокие концентрации (то есть редким).

Нахождение в природе в рассеянном состоянии и повсеместно (только в различных концентрациях) – это свойство всех химических элементов. Этот факт впервые констатировал В.И. Вернадский, и он получил название закона рассеяния химических элементов Вернадского. Но часть элементов способна кроме рассеянной формы нахождения присутствовать в природе и в другой форме – в форме химических соединений. А элементы с низкими концентрациями присутствуют только в рассеянной форме.

Механизм гетеровалентного изоморфизма несколько более сложен. Впервые на наличие такого типа изоморфизма обратил внимание в конце XIX в. Г. Чермак. Он доказал, что очень сложные химические формулы, получаемые для большинства минеральных соединений класса силикатов, являются таковыми именно по причине гетеровалентного изоморфизма, когда взаимно замещают друг друга целые группы атомов. Такой тип изоморфизма очень характерен именно для силикатных соединений.

Другими вариантами нахождения рассеянных атомов элементов в земной коре являются их локализация в дефектах кристаллической решетки, в её полостях, а также - в сорбированном состоянии на поверхности других частиц, в том числе, и коллоидных.



2024 supertachki.ru. Ходовая часть. Обзоры. Топливная система. Шины и диски. Салон. Двигатель.