Литосферные плиты и их названия. «Литосферные плиты

Литосферные плиты имеют высокую жесткость и способны в течение продолжительного времени сохранять без изменений свое строение и форму при отсутствии воздействий со стороны.

Движение плит

Литосферные плиты находятся в постоянном движении. Это движение, происходящее в верхних слоях , обусловлено наличием присутствующих в мантии конвективных течений. Отдельно взятые литосферные плиты сближаются, расходятся и скользят относительно друг друга. При сближении плит возникают зоны сжатия и последующее надвигание (обдукция) одной из плит на соседнюю, или поддвигание (субдукция) расположенных рядом образований. При расхождении появляются зоны растяжения с характерными трещинами, возникающими вдоль границ. При скольжении образуются разломы, в плоскости которых наблюдается близлежащих плит.

Результаты движения

В областях схождения огромных континентальных плит, при их столкновении, возникают горные массивы. Подобным образом, в свое время возникла горная система Гималаи, образовавшаяся на границе Индо-Австралийской и Евразийской плит. Результатом столкновения океанических литосферных плит с континентальными образованиями являются островные дуги и глубоководные впадины.

В осевых зонах срединно-океанических хребтов возникают рифты (от англ. Rift – разлом, трещина, расщелина) характерной структуры. Подобные образования линейной тектонической структуры земной коры, имеющие протяженность сотни и тысячи километров, с шириной в десятки или сотни километров, возникают в результате горизонтальных растяжений земной коры. Рифты очень крупных размеров принято называть рифтовыми системами, поясами или зонами.

В виду того, что каждая литосферная плита является единой пластиной, в ее разломах наблюдается повышенная сейсмическая активность и вулканизм. Данные источники расположены в пределах достаточно узких зон, в плоскости которых возникают трения и взаимные перемещения соседних плит. Эти зоны называются сейсмическими поясами. Глубоководные желоба, срединно-океанические хребты и рифы представляют собой подвижные области земной коры, они расположены на границах отдельных литосферных плит. Это лишний раз подтверждает, что ход процесса формирования земной коры в данных местах и в настоящее время продолжается достаточно интенсивно.

Важность теории литосферных плит отрицать нельзя. Так как именно она способна объяснить наличие в одних областях Земли гор, в других – . Теория литосферных плит позволяет объяснить и предусмотреть возникновение катастрофических явлений, способных возникнуть в районе их границ.

Кора Земли разделена разломами на литосферные плиты, представляющие собой огромные цельные блоки, достигающие верхних слоев мантии. Они являются крупными стабильными частями земной коры и находятся в непрерывном движении, скользя по поверхности Земли. Литосферные плиты состоят либо из материковой, либо из океанической коры, а в некоторых континентальный массив сочетается с океаническим. Выделяют 7 наиболее крупных литосферных плит, которые занимают 90% поверхности нашей планеты: Антарктическая, Евразийская, Африканская, Тихоокеанская, Индо-Австралийская, Южноамериканская, Североамериканская. Кроме них существуют десятки плит средних размеров и много мелких. Между средними и крупными плитами находятся пояса в виде мозаик из мелких плит коры.

Теория тектоники литосферных плит

Теория литосферных плит изучает их движение и процессы, связанные с этим движением. Данная теория гласит о том, что причиной глобальных тектонических изменений является горизонтальное перемещение блоков литосферы - плит. Тектоника литосферных плит рассматривает взаимодействие и движение блоков земной коры.

Теория Вагнера

О том, что литосферные плиты горизонтально перемещаются, впервые высказал предположение в 1920-х годах Альфред Вагнер. Он выдвинул гипотезу о «дрейфе континентов», но она в то время не была признана достоверной. Позже, в 1960-х годах, проводились исследования океанического дна, в результате которых подтвердились догадки Вагнера о горизонтальном движении плит, а также выявлено наличие процессов расширения океанов, причиной которых является формирование океанической коры (спрединг). Основные положения теории в 1967-68 годах сформулировали американские геофизики Дж. Айзекс, К. Ле Пишон, Л. Сайкс, Дж. Оливер, У. Дж. Морган. Согласно этой теории границы плит находятся в зонах тектонической, сейсмической и вулканической активности. Границы бывают дивергентными, трансформными и конвергентными.

Движение литосферных плит

Литосферные плиты приходят в движение вследствие перемещения вещества, находящегося в верхней мантии. В зонах рифтов это вещество прорывает кору, расталкивая плиты. Большая часть рифтов располагается на океаническом дне, так как там земная кора гораздо тоньше. Наиболее крупные рифты, которые существуют на суше, находятся возле озера Байкал и Великих Африканских озер. Движение литосферных плит происходит со скоростью 1-6 см за год. Когда они между собой сталкиваются, на их границах возникают горные системы при наличии материковой коры, а в случае, когда одна из плит имеет кору океанического происхождения, образуются глубоководные желоба.

Основные положения тектоники плит сводятся к нескольким пунктам

  1. В верхней каменной части Земли существуют две оболочки, которые значительно отличаются по геологическим характеристикам. Этими оболочками являются жесткая и хрупкая литосфера и находящаяся под ней подвижная астеносфера. Подошва литосферы представляет собой раскаленную изотерму температурой 1300°С.
  2. Литосфера состоит из непрерывно движущихся по поверхности астеносферы плит земной коры.

Тектоника плит (plate tectonics ) - современная геодинамическая концепция, основанная на положении о крупномасштабных горизонтальных перемещениях относительно целостных фрагментов литосферы (литосферных плит). Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.

Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков - У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов

Основные положения тектоники плит

Основные положения тектоники плит можно свети к нескольким основополагающим

1. Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.

2. Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.

Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.

Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:

Австралийская плита,
Антарктическая плита,
Африканская плита,
Евразийская плита,
Индостанская плита,
Тихоокеанская плита,
Северо-Американская плита,
Южно-Американская плита.

Средние плиты: Аравийская (субконтинент), Карибская, Филиппинская, Наска и Кокос и Хуан де Фука и др..

Некоторые литосферные плиты сложены исключительно океанической корой (например, Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.

3. Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения .

Соответственно, выделяются и три типа основных границ плит.

Дивергентные границы – границы, вдоль которых происходит раздвижение плит.

Процессы горизонтального растяжения литосферы называют рифтогенезом . Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах.

Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры.

Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).


Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать) .

Строение срединно-океанического хребта

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит.

Именно в этих зонах происходит формирование молодой океанической коры.

Конвергентные границы – границы, вдоль которых происходит столкновение плит. Главных вариантов взаимодействия при столкновении может быть три: «океаническая – океаническая», «океаническая – континентальная» и «континентальная - континентальная» литосфера. В зависимости от характера сталкивающихся плит, может протекать несколько различных процессов.

Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.

При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.

Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвига субдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого .

В зонах субдукции начинается процесс формирования новой континентальной коры.

Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.

При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии . В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета.

Модель процесса коллизии

Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры).

Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

Трансформные границы – границы, вдоль которых происходят сдвиговые смещения плит.

Границы литосферных плит Земли

1 – дивергентные границы (а – срединно-океанские хребты, б – континентальные рифты); 2 – трансформные границы; 3 – конвергентные границы (а – островодужные, б – активные континентальные окраины, в – коллизионные); 4 – направления и скорости (см/год) движения плит.

4. Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

5. Основной причиной движения плит служит мантийная конвекция , обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации.

Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ.

Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями.

Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

Рисунок - Силы, действующие на литосферные плиты.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO . Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance ). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.

Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism ), приложенными к любым точкам подошвы плит, на рис. 2.5.5 – силы FDO и FDC ; 2) связанные с силами, приложенными к краям плит (edge-force mechanism ), на рисунке – силы FRP и FNB . Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли.

Мантийная конвекция и геодинамические процессы

В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием).

Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.

Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

6. Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Некоторые доказательства реальности механизма тектоники литосферных плит

Удревнение возраста океанической коры по мере удаления от осей спрединга (см. рисунок). В этом же направлении отмечается нарастание мощности и стратиграфической полноты осадочного слоя.

Рисунок - Карта возраста пород океанического дна Северной Атлантики (по У. Питмену и М. Тальвани, 1972). Разным цветом выделены участки океанского дна различных возрастных интервалов; цифрами указан возраст в миллионах лет.

Геофизические данные.

Рисунок – Томографический профиль через Эллинский желоб, остров Крит и Эгейское море. Серые кружки – гипоцентры землетрясений. Синим цветом показана пластина погружающейся холодной мантии, красным – горячая мантия (по данным В. Спэкмена, 1989)

Остатки огромной плиты Фаралон, исчезнувшей в зоне субдукции под Северной и Южной Америками, фиксируемые в виде слейбов «холодной» мантии (разрез поперек Сев. Америки, по S-волнам). По Grand, Van der Hilst, Widiyantoro, 1997, GSA Today, v. 7, No. 4, 1-7

Линейные магнитные аномалии в океанах были обнаружены в 50-х годах при геофизическом изучении Тихого океана. Это открытие позволило в 1968 году Хессу и Дицу сформулировать теорию спрединга океанического дна, которая выросла в теорию тектоники плит. Они стали одним из самых веских доказательств правильности теории.

Рисунок - Образование полосовых магнитных аномалий при спрединге.

Причиной происхождения полосовых магнитных аномалий является процесс рождения океанической коры в зонах спрединга срединно-океанических хребтов, излившиеся базальты при остывании ниже точки Кюри в магнитном поле Земли, приобретают остаточную намагниченность. Направление намагниченности совпадает с направлением магнитного поля Земли, однако вследствие периодических инверсий магнитного поля Земли излившиеся базальты образуют полосы с различным направлением намагниченности: прямым (совпадает с современным направлением магнитного поля) и обратным.

Рисунок - Схема образования полосовой структуры магнитоактивного слоя и магнитных аномалий океана (модель Вайна – Мэтьюза).



Добавить свою цену в базу

Комментарий

Литосфера — это каменная оболочка Земли. От греческого «литос» — камень и «сфера» — шар

Литосфера - внешняя твердая оболочка Земли, которая включает всю земную кору с частью верхней мантии Земли и состоит из осадочных, изверженных и метаморфических пород. Нижняя граница литосферы нечеткая и определяется резким уменьшением вязкости пород, изменением скорости распространение сейсмических волн и увеличением электропроводности пород. Толщина литосферы на континентах и под океанами различается и составляет в среднем соответственно 25 - 200 и 5 - 100 км.

Рассмотрим в общем виде геологическое строение Земли. Третья за отдаленностью от Солнца планета - Земля имеет радиус 6370 км, среднюю плотность - 5,5 г/см3 и состоит из трех оболочек - коры , мантии и и. Мантия и ядро делятся на внутренние и внешние части.

Земная кора — тонкая верхняя оболочка Земли, которая имеет толщину на континентах 40-80 км, под океанами - 5-10 км и составляет всего около 1 % массы Земли. Восемь элементов - кислород, кремний, водород, алюминий, железо, магний, кальций, натрий - образовывают 99,5 % земной коры.

Согласно научным исследованиям, учёным удалось установить, что литосфера состоит из:

  • Кислорода – 49%;
  • Кремния – 26%;
  • Алюминия – 7%;
  • Железа – 5%;
  • Кальция – 4%
  • В состав литосферы входит немало минералов, самые распространённые – шпат и кварц.

На континентах кора трехслойная: осадочные породы укрывают гранитные, а гранитные залегают на базальтовых. Под океанами кора «океанического» , двухслойного типа; осадочные породы залегают просто на базальтах, гранитного пласта нет. Различают также переходный тип земной коры (островно-дуговые зоны на окраинах океанов и некоторые участки на материках, например Черное море) .

Наибольшую толщину земная кора имеет в горных районах (под Гималаями — свыше 75 км) , среднюю - в районах платформ (под Западно-Сибирской низиной - 35-40, в границах Русской платформы - 30-35), а наименьшую - в центральных районах океанов (5-7 км) . Преобладающая часть земной поверхности - это равнины континентов и океанического дна.

Континенты окружены шельфом- мелководной полосой глубиной до 200 г и средней шириной близко 80 км, которая после резкого обрывчастого изгиба дна переходит в континентальный склон (уклон изменяется от 15-17 до 20-30°). Склоны постепенно выравниваются и переходят в абиссальные равнины (глубины 3,7-6,0 км) . Наибольшие глубины (9-11 км) имеют океанические желоба, подавляющее большинство которых расположенная на северной и западной окраинах Тихого океана.

Основная часть литосферы состоит из изверженных магматических пород (95 %), среди которых на континентах преобладают граниты и гранитоиды, а в океанах-базальты.

Блоки литосферы - литосферные плиты - двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящен раздел геологии о тектонике плит.

Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium - кремний) и Al (лат. Aluminium - алюминий).

Литосферные плиты

Стоит отметить, что самые крупные тектонические плиты очень хорошо различимы на карте и ими являются:

  • Тихоокеанская – самая большая плита планеты, вдоль границ которой происходят постоянные столкновения тектонических плит и образуются разломы – это является причиной её постоянного уменьшения;
  • Евразийская – покрывает почти всю территорию Евразии (кроме Индостана и Аравийского полуострова) и содержит наибольшую часть материковой коры;
  • Индо-Австралийская – в её состав входит австралийский континент и индийский субконтинент. Из-за постоянных столкновений с Евразийской плитой находится в процессе разлома;
  • Южно-Американская – состоит из южноамериканского материка и части Атлантического океана;
  • Северо-Американская – состоит из североамериканского континента, части северо-восточной Сибири, северо-западной части Атлантического и половины Северного Ледовитого океанов;
  • Африканская – состоит из африканского материка и океанической коры Атлантического и Индийского океанов. Интересно, что соседствующие с ней плиты движутся в противоположную от неё сторону, поэтому здесь находится наибольший разлом нашей планеты;
  • Антарктическая плита – состоит из материка Антарктида и близлежащей океанической коры. Из-за того, что плиту окружают срединно-океанические хребты, остальные материки от неё постоянно отодвигаются.

Движение тектонических плит в литосфере

Литосферные плиты, соединяясь и разъединяясь, всё время изменяют свои очертания. Это даёт возможность учёным выдвигать теорию о том, что около 200 млн. лет назад литосфера имела лишь Пангею - один-единственный континент, впоследствии расколовшийся на части, которые начали постепенно отодвигаться друг от друга на очень маленькой скорости (в среднем около семи сантиметров в год).

Это интересно! Существует предположение, что благодаря движению литосферы, через 250 млн. лет на нашей планете сформируется новый континент за счёт объединения движущихся материков.

Когда происходит столкновение океанической и континентальной плит, край океанической коры погружается под материковую, при этом с другой стороны океанической плиты её граница расходится с соседствующей с ней плитой. Граница, вдоль которой происходит движение литосфер, называется зоной субдукции, где выделяют верхние и погружающиеся края плиты. Интересно, что плита, погружаясь в мантию, начинает плавиться при сдавливании верхней части земной коры, в результате чего образуются горы, а если к тому же прорывается магма – то и вулканы.

В местах, где тектонические плиты соприкасаются друг с другом, расположены зоны максимальной вулканической и сейсмической активности: во время движения и столкновения литосферы, земная кора разрушается, а когда они расходятся, образуются разломы и впадины (литосфера и рельеф Земли связаны друг с другом). Это является причиной того, что вдоль краёв тектонических плит расположены наиболее крупные формы рельефа Земли – горные хребты с активными вулканами и глубоководные желоба.

Проблемы литосферы

Интенсивное развитие промышленности привело к тому, что человек и литосфера в последнее время стали чрезвычайно плохо уживаться друг с другом: загрязнение литосферы приобретает катастрофические масштабы. Произошло это вследствие возрастания промышленных отходов в совокупности с бытовым мусором и используемыми в сельском хозяйстве удобрениями и ядохимикатами, что негативно влияет на химический состав грунта и на живые организмы. Учёные подсчитали, что за год на одного человека припадает около одной тонны мусора, среди которых – 50 кг трудноразлагаемых отходов.

Сегодня загрязнение литосферы стало актуальной проблемой, поскольку природа не в состоянии справиться с ней самостоятельно: самоочищение земной коры происходит очень медленно, а потому вредные вещества постепенно накапливаются и со временем негативно воздействуют и на основного виновника возникшей проблемы – человека.

Как появились материки и острова? От чего зависит название наиболее крупных плит Земли? Откуда взялась наша планета?

Как всё начиналось?

Каждый хоть раз задумывался о происхождении нашей планеты. Для глубоко верующих людей всё просто: Землю за 7 дней создал Бог - и точка. Они непоколебимы в своей уверенности, даже зная названия крупнейших образовавшихся в результате эволюции поверхности планеты. Для них зарождение нашей твердыни - это чудо, и никакие доводы геофизиков, естествоиспытателей и астрономов не способны их переубедить.

Учёные, однако, придерживаются иного мнения, основываясь на гипотезах и предположениях. Имеено они строят догадки, выдвигают версии и придумавают всему название. Наиболее крупных плит Земли это тоже коснулось.

На данный момент достоверно неизвестно, каким образом появилась наша твердь, однако есть много интересных мнений. Именно учёные единогласно постановили, что когда-то существовал единый гиганстский материк, в результате катаклизмов и природных процессов расколовшийся на части. Также учёные придумали не только название наиболее крупных плит Земли, но и обозначили малые.

Теория на грани фантастики

Например, и Пьер Лаплас - учёные из Германии - считали, что Вселенная появилась из газовой туманности, а Земля - это постепенно остывающая планета, земная кора которой - не что иное, как охлаждённая поверхность.

Другой учёный, полагал, что Солнце при прохождении через газопылевое облако часть его захватило за собой. Его версия состоит в том, что наша Земля никогда не была полностью расплавленным веществом и изначально представляла собой холодную планету.

Если верить теории английского учёного Фреда Хойла, Солнце имело свою звезду-близнеца, которая взорвалась, подобно сверхновой. Почти все осколки отбросило на огромные расстояний, а небольшое количество оставшихся вокруг Солнца превратились в планеты. Один из таких осколков и стал колыбелью человечества.

Версия как аксиома

Самая распространенная история возникновения Земли состоит в следующем:

  • Около 7 миллиардов лет назад образовалась первичная холодная планета, после чего её недра начали постепенно разогреваться.
  • Затем, во времена так называемой «лунной эры», раскалённая лава в гигантских количествах излилась на поверхность. Это повлекло за собой формирование первичной атмосферы и послужило толчком для образования земной коры - литосферы.
  • Благодаря первичной атмосфере на планете появились океаны, в результате чего Земля была покрыта плотной оболочкой, представляя собой очертания океанических впадин и континентальных выступов. В те далёкие времена площадь воды значительно преобладала над площадью суши. К слову, и верхняя часть мантии называется литосферой, которая образует литосферные плиты, составляющие общий "облик" Земли. Названия наиболее крупных плит соответствуют своему географическому положению.

Гигантский раскол

Как же образовались континенты и литосферные плиты? Около 250 миллионов лет назад Земля выглядела совершенно не так, как сейчас. Тогда на нашей планете был всего один, просто-таки гигантский материк под названием Пангея. Его общая площадь впечатляла и равнялась площади всех ныне существующих материков, включая острова. Пангея со всех сторон омывалась океаном, который назывался Панталасса. Этот огромнейший океан занимал всю оставшуюся поверхность планеты.

Однако существование суперматерика оказалось недолговечным. Внутри Земли бурлили процессы, в результате которых вещество мантии начало растекаться в разные стороны, постепенно растягивая материк. Из-за этого Пангея сначала разъединилась на 2 части, образовав два континента - Лавразию и Гондвану. Затем и эти материки постепенно раскололись на множество частей, которые постепенно разошлись в разные стороны. Помимо новых материков, появились литосферные плиты. Из названия наиболее крупных плит становится понятным, в каких местах образовались гигантские разломы.

Остатки Гондваны - это известные нам Австралия и Антарктида, а также Южно-Африканская и Африканская литосферные плиты. Доказано, что эти плиты и в наше время постепенно расходятся - скорость из движения составляет 2 см в год.

Осколки Лавразии превратились в две литосферные плиты - Северо-Американскую и Евразийскую. При этом Евразия состоит не только из осколка Лавразии, но и из частей Гондваны. Названия наиболее крупных плит, формирующих Евразию - Индостанская, Аравийская и Евразийская.

В образовании Евразийского континента непосредственное участие принимает Африка. Её литосферная плита медленно сближается с Евразийской, образуя горы и возвышенности. Именно из-за этого "союза" появились Карпаты, Пиренеи, Альпы и Судеты.

Список литосферных плит

Названия наиболее крупных плит таковы:

  • Южно-Американская;
  • Австралийская;
  • Евразийская;
  • Северо-Американская;
  • Антарктическая;
  • Тихоокеанская;
  • Южно-Американская;
  • Индостанская.

Плиты среднего размера - это:

  • Аравийская;
  • Наска;
  • Скотия;
  • Филлипинская;
  • Кокос;
  • Хуан-де-Фука.


2024 supertachki.ru. Ходовая часть. Обзоры. Топливная система. Шины и диски. Салон. Двигатель.